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Abstract
We examine structural relaxation in a supercooled glass-forming liquid simulated by
constant-energy constant-volume (NVE) molecular dynamics. Time correlations of the total
kinetic energy fluctuations are used as a comprehensive measure of the system’s approach to the
ergodic equilibrium. We find that, under cooling, the total structural relaxation becomes delayed
as compared with the decay of the component of the intermediate scattering function
corresponding to the main peak of the structure factor. This observation can be explained by
collective movements of particles preserving many-body structural correlations within compact
three-dimensional (3D) cooperatively rearranging regions.

Understanding the microscopic mechanisms of the super-
Arrhenius slowing down in fragile glass-forming liquids [1]
remains a major problem in condensed-matter physics [2, 3].
It is understood that below the temperature TA that marks the
crossover to super-Arrhenius behaviour, liquid dynamics is
controlled by the topography of the potential energy-landscape
(PEL) [4]. The PEL is known to be divided into metabasins—
areas of PEL confining sets of mutually well-connected local
energy minima [5]. Inter-metabasin transitions, mediating
the (primary) α-relaxation, involve uncorrelated movements
of large groups of particles [6]. On a shorter timescale,
confinement to a metabasin imposes structural constraints upon
the atomic motions, reducing the number of accessible degrees
of freedom. This renders intra-metabasin dynamics highly
collective, in accordance with the Adam–Gibbs concept of
independent cooperatively rearranging regions (CRR) [7].

The geometry and dynamics of CRR remain elusive. By
definition [7], a CRR is a minimum-sized region of structure
possessing a relaxational degree of freedom independent of the
region’s environment. It was suggested [8] that this degree of
freedom can be associated with a coherent linear translation
of a string-like cluster of particles within a slowly changing
structural environment [9]. On the other hand, the random
first-order transition theory of glasses [10] predicts a transition,
at some stage of the liquid’s cooling, from a string-like shape

of CRR to a compact one. The concept of a compact CRR
presumes that there exists a relaxational degree of freedom
that makes it possible for a 3D configuration of particles
confined to that CRR to perform a cooperative movement that
would preserve some of the many-body structural correlations
constraining the configuration.

A distinctive aspect of the relaxation dynamics associated
with compact CRR is that the described cooperative 3D
movements of particles are expected to result in decorrelation
of the density fluctuations while preserving slower-decaying
many-body structural correlations. The relaxation of the
density fluctuations is described by the intermediate scattering
function F(Q, t) [11]. Its slowest-decaying component
(within the relevant range of Q) corresponds to Qm—the
position of the main maximum of the structure factor S(Q). In
the case of cooperative 3D particle movements within compact
CRR, F(Qm, t) is expected to decay well before the total
liquid’s structural relaxation has been accomplished. This can
be understood using the following simple model. Consider
slowly relaxing structural domains (clusters) immersed in a
faster relaxing liquid. Let the clusters perform uncorrelated
rotational and translational movements. It is easy to see
that F(Qm, t) for such a model would decay well before the
clusters dissipate as structural entities.

0953-8984/09/245101+05$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/24/245101
mailto:mik@pdc.kth.se
http://stacks.iop.org/JPhysCM/21/245101


J. Phys.: Condens. Matter 21 (2009) 245101 M Elenius and M Dzugutov

Detecting the described effect requires the use of a
comprehensive measure of the structural relaxation that would
be independent of the dissipation of density fluctuations. In
this paper, we report a molecular dynamics (MD) simulation
of a fragile glass-forming liquid where the structural relaxation
is measured by the time correlations of the fluctuations
of the system’s total kinetic energy. We find that, as
the liquid is cooled sufficiently close to the mode-coupling
theory (MCT) [12] critical temperature Tc, its total structural
relaxation becomes delayed as compared with the respective
decay of F(Qm, t). This anomaly can be interpreted as
an indication of the existence of slowly dissipating many-
body correlations constraining the movements of cooperatively
rearranging 3D groups of particles. These groups can be
identified with compact CRR.

The MD simulation we report here explores a fragile
simple one-component glass-forming liquid demonstrating a
pronounced tendency for icosahedral clustering [13] (named
Z2 in that reference), with the estimated Tc = 0.65, fragility
index B = 4.5, and TA = 1.1. For each temperature, an
equilibrium simulation in an NV E ensemble was performed
using a system of 16 384 particles. A system of 128 000
particles was also tried, and no size-dependent effects have
been observed.

Consider a system of N particles in an NV E ensemble.
Using the expression for the isometric heat capacity [14, 15],
its entropy s can be linked to the variance of the kinetic energy
k (both per particle):

c−1
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T

(
∂s

∂T

)−1

V

= 2

3
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The respective expression for the entropy explored by the
system within the time interval t , s(t), [16], will be:
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where 〈 〉t denotes averaging over the time interval t .
The system’s approach to the ergodic equilibrium can be
comprehensively assessed as the difference between the two
quantities [17]:
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(3)
Note that �(t) is a formal analogue of an earlier suggested
measure of ergodic convergence [18] calculated from the time-
dependent variance of the single particle energy. Following the
arguments presented in that work, it is also possible to conclude
that the large-t asymptotic behaviour of �(t) can be described
as

�(t)/�(0) = 〈k〉2 − 〈〈k〉2
t 〉

〈k〉2 − 〈k2〉 −→ τ

t
, t → ∞ (4)

where

τ = 2
∫ ∞

0
dt c(t)/c(0) (5)

Figure 1. Asymptotic behaviour of �(t) as predicted by
equation (4). Solid line, T = 0.75; dashed line, T = 1; chain-dotted
line, T = 1.35. Inset: solid line, τ as evaluated from the asymptotic
slope of �(0)/�(t), defined in equation (4); boxes, τ calculated by
integrating c(t), defined in equation (5).

and c(t) is the time correlation function for the system’s total
kinetic energy fluctuations:

c(t) = 〈δk(t)δk(0)〉 (6)

with δk(t) = k(t) − 〈k〉. This asymptotic behaviour of �(t)
is indeed observed in our MD simulations, both above and
below TA, see figure 1. The inset of that figure demonstrates
the agreement between τ as evaluated from the asymptotic
slope of �(0)/�(t) (equation (4)), and that obtained by direct
integration of the correlation function c(t) (equation (5)).

Thus, the system’s relaxation, as measured by �(t), is
ultimately controlled by the decay of c(t). The general
structure of this correlation function is shown in figure 2.
Its short-time behaviour (shown in the inset) is dominated
by large-scale oscillations. The latter are evidently caused
by particles’ vibrations within the cages of their immediate
neighbours, the frequency being determined by the mean-
square force [19] with weak temperature dependence.

The described short-time behaviour of c(t) obviously
excludes the possibility of using its normalized integral τ ,
equation (5), which determines the decay rate of �(t),
as an unambiguous measure of the liquid’s relaxation rate.
However, the initial oscillatory regime of c(t) is distinct in
time, and decoupled from the relaxational regime that follows
it. The structural relaxation in the asymptotic α-regime can
therefore be adequately measured by the long-time decay of
c(t). We remark that, above TA, this longer-time relaxational
evolution of c(t), when presented as a function of the mean-
square displacement, figure 2, demonstrates the standard
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Figure 2. Evolution of the correlation function c(t), as defined by
equation (6), shown as a function of the mean-square displacement.
Solid line, T = 0.75; dashed line, T = 1.00; chain-dotted line,
T = 1.35. Inset: the short-time behaviour of the same curves. Note
that in the inset they are shown as a function of time.

Table 1. Parameters’ values for the stretched exponential KWW fits
to the relaxation functions shown in figure 3.

T A 6Dτ β

c(t) 0.75 0.0393 0.71 0.96
F(Qm, t) 0.75 0.72 0.71 0.96
c(t) 0.7 0.0557 1.02 0.75
F(Qm, t) 0.7 0.72 1.02 0.865

liquid universality of the diffusion–relaxation relation. This
universality evidently breaks below TA.

We now exploit c(t) for a detailed analysis of the α-
relaxation process in the supercooled dynamics regime. In
figure 3, the asymptotic behaviour of c(t) is compared
with that of F(Qm, t), for two temperatures below TA.
For convenience, both are plotted as a function of the
mean-square displacement. To facilitate the comparative
quantitative analysis, the correlation functions presented in
figure 3 have been fitted, within the relevant domains of
time, with the Kohlrausch–Williams–Watts (KWW) stretched
exponential function A exp [−(t/τ)β] which we use here in
the equivalent form A exp {−[〈r 2(t)〉/6Dτ ]β }, D being the
diffusion coefficient. The parameters’ values for the fits are
compiled in table 1. Furthermore, to make it possible to
compare the two kinds of correlation functions on an equal
footing, each function has been scaled by the respective value
of the KWW parameter A. Both F(Qm, t) and c(t) appear
to be well described by the KWW approximation within
the α-relaxation time domain. The latter follows the initial
stage of the relaxation process, confined to 〈r 2(t)〉 < 1,
that corresponds to conformational rearrangements of particles
within the cage of the first neighbours.

Figure 3. Structural relaxation in the temperature domain of
supercooled liquid dynamics. Solid lines, c(t); dashed lines,
F(Qm, t); left and right curves, respectively, correspond to T = 0.75
and T = 0.7. Dots: the fits of the KWW stretched exponential
approximation A exp [−(t/τ)β ]. The values of the fitting parameters
are presented in table 1. All sets of data presented in the plot are
scaled by the respective values of A.

For T = 0.75, the asymptotic behaviour of the two
correlation functions is indistinguishable, within the accuracy
of the KWW fit3. However, as the liquid is cooled to T = 0.7,
the asymptotic decay of c(t) becomes considerably delayed
as compared with the respective decay of F(Qm, t). We also
note that the observed delayed decay of c(t) is accounted for
by a measurable reduction of the respective KWW stretching
parameter β (table 1). The relaxation stretching, arising
under cooling below TA, is commonly viewed as a result of
superposition of relaxation processes with an extended range
of relaxation times. Thus, the additional relaxation stretching
detected using c(t) indicates an additional slow relaxation
process not captured by F(Qm, t).

We remark that a system with a finite configurational
entropy possesses a finite range of structural correlations.
Therefore, the ergodicity-restoring structural relaxation in a
liquid is a strictly local process. In the case of pair correlations,
the correlation range rc corresponds to a vanishing radial
distribution function g(r). Respectively, if relaxation of the
pair correlations is considered in terms of F(Q, t), the lowest
Q relevant for the structural relaxation can be estimated as
Qmin = 2π/rc. The Q-dependent relaxation time of F(Q, t)
can be estimated from the structure factor S(Q) [20] as
τ (Q) = S(Q)/Q2. In a typical dense simple liquid [11]
S(Qm)/S(Qmin) > (Qm/Qmin)

2, and, therefore, τ (Qm) is
expected to exceed τ (Qmin). In figure 4, we test this conjecture
for the simulated liquid at T = 0.7. The figure shows that g(r)

apparently vanishes beyond rc = 10, from which we estimate

3 The statistical accuracy of the correlation function c(t) as shown in figure 4
required the averaging over the total simulation run of 109 timesteps.
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Figure 4. Top panel: radial distribution function for the simulated
liquid at T = 0.7. Bottom panel: F(Q, t). From left to right:
Q = 4, 6, 2, 0.6, 7.2. Dots correspond to the fits of KWW. Inset
shows the KWW parameters derived from the fitting. Open circles: τ
(left-hand scale); dots: β (right-hand scale).

Qmin ≈ 0.6. Relaxation of F(Q, t) is analysed within the
relevant range of Q bounded by Qmin and Qm. For each value
of Q, the decay of F(Q, t) is quantified by the KWW fit; the Q
variations of the resulting KWW parameters are shown in the
inset. Evidently, τ (Qm) is a pronounced absolute maximum
within the explored range of Q, whereas β does not change
significantly. Therefore, structural relaxation in our liquid at
T = 0.7, in the pair approximation, is entirely controlled
by F(Qm, t). This leads to the conclusion that the observed
delay of the total structural relaxation relative to the decay of
F(Qm, t) is due to the delay of the relaxation of higher-order
correlations relative to that of pair correlations.

The main peak of S(Q) is linked to the local order (cages
of nearest neighbours). Therefore, one reason for the decay
of F(Qm, t) can be a comprehensive dissipation of the local
order due to uncorrelated particle motions. But it can also be
caused by collective particle movements preserving the higher-
order structural correlations. This will delay the total structural
relaxation relative to the decay of F(Qm, t) as we observe for
T = 0.7. The increase in the life-time of these structural

correlations can be attributed to a rapid buildup of locally
preferred structure that is expected upon cooling the liquid
towards Tc. This transformation in the relaxation dynamics can
be interpreted as a crossover to the regime of compact CRR as
conjectured in [10].

The locally preferred structure in this system is
icosahedral. Like an earlier studied liquid with a similar
structure [21, 22], it demonstrates a strong tendency for a low-
dimensional icosahedral aggregation [13] growing towards
percolation as T → Tc. Relative mobility of these structural
elements can be conjectured as a conceivable reason for the
decoupling between c(t) and F(Qm, t). As a corroborating
observation, the anomalous decay of F(Qm, t) reported here
can be compared with a related Q-dependent anomaly in the
non-ergodicity parameter in a supercooled low-density liquid
approaching gelation transition [23] caused by a percolating
cluster network. Compact 3D CRR were also found below Tc

in the binary Lennard-Jones (BLJ) system [24] and NiZr [25],
and bond-preserving movements of structural domains were
observed at a saddle point crossing of the BLJ system [26].
On the other hand, a study of the frequency-dependent
specific heat in silica [27], also based on the analysis of the
kinetic energy fluctuations, showed no discrepancy between
the relaxation of these fluctuations and the decay of the self
part of F(Q, t).

We note that, because of the particles’ indistinguishability,
the structural correlations can survive particles’ exchange
induced by vacancy hopping. Therefore, the slow energy
fluctuations we report here cannot be necessarily associated
with breaking bonds connecting the nearest neighbours. The
vacancy-assisted particle hopping, common in supercooled
liquids, significantly complicates the problem of identifying
the groups of particles involved in the conjectured compact
CRR dynamics.

One of the consequences of compact CRR concerns
the relaxation of shear stress. The liquid can possibly
accommodate the shear strain and relax the induced stress
by a mutual rearrangement of slowly relaxing clusters [28]
before their internal structure has dissipated. Thus, shear stress
relaxation in a supercooled liquid, like the dissipation of the
local density fluctuations as measured by F(Qm, t), does not
necessarily imply structural relaxation.

In summary, we found a novel aspect of the supercooled
liquid dynamics manifested by the advanced decay of
F(Qm, t) relative to the actual structural relaxation. The latter
has been assessed from the decay of the time correlations of
the system’s total kinetic energy fluctuations. The observed
effect can be interpreted as being caused by the cooperative
movements of particles constrained by slowly decaying many-
body structural correlations within compact CRR which appear
as the liquid is cooled close to Tc. The observed transformation
in the relaxation mechanism can be regarded as a result of the
metabasin topography of the PEL of our model.
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